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INTRODUCTION 

WITH THE knowledge accumulated from the previous studies 
on convective heat transfer in porous media, considerable 
attention has now turned to a more sophisticated problem 
that takes into account the mass transfer effects. The 
phenomenon, which is sometimes referred to as ‘double- 
diffusive’ or ‘thermohaline’ convection in geophysical fluid 
mechanics, has many important applications in energy- 
related engineering problems, for example, the migration of 
moisture in fibrous insulation, the spreading of chemical 
pollutants through water-saturated soil, the cooling of 
nuclear reactors and the underground disposal of nuclear 
wastes. 

Nield [l] made the first attempt to study the stability of 
flow in horizontal layers with imposed vertical temperature 
and concentration gradients for coupled heat and mass trans- 
fer by natural convection in a porous medium. Bejan and 
co-workers [2-S] conducted a series of investigators to study 
these effects on natural convection for various geometries. In 
a recent study, Poulikakos [6] extended the results by Bejan 
[7l to consider buoyancy induced heat and mass transfer 
from a concentrated source in an infinite porous medium. 

The purpose of this study is to analyze another practically 
important problem of natural convection induced by the 
combined action of temperature and concentration gradients 
from a buried sphere. The approach is parallel to that of 
Poulikakos [6], however, more complicated boundary con- 
ditions, i.e. combination of different thermal and con- 
centration boundary conditions, are considered. Emphases 
have been placed on a fundamental examination of these 
effects on the flow, temperature and concentration fields. 

FORMULATION 

Consider a sphere of radius a buried in an intinite porous 
medium. For heat and mass transfer driven by buoyancy 
effects, the governing equations based on Darcy’s law are 
simplified by introducing the stream function such that they 
are given by 

+Rsin 0g) -N(cos 0% +Rsin (I;)] (1) 

(2) 

(3) 

where temperature and concentration have been non- 
dimensional&d as follows : 

T- T, 
@=r,-r,* constant temperature 

T--T, 
qlka ’ 

constant heat flux 

c_C-CIO 
c#)-c,’ 

constant concentration 

c-c, 
- 
m/Da ’ 

constant mass flux. 

The subscripts 0 and co denote the condition at the surface 
of the sphere and at infinity, respectively. 

Four different cases are considered in the present study : 

(1) a sphere of constant temperature and coaantration ; 
(2) a sphere of constant heat flux and mass flux ; 
(3) a sphere of constant temperature and mass tlux ; 
(4) a sphere of constant heat flux and concentration. 

Therefore, the boundary conditions can be summarixed as 
follows : 

atR=l, 

@=I for constant temperature case 

ao 
z = - I for constant heat flux case 

C=l for constant concentration case 

ac 
z = - 1 for constant mass flux case 

t Author to whom correspondence should be addressed. 
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asR+co, 

0=0 c-0 

1 W 1 dY ---_O - 
R' sin 6 d8 RsinBzzO’ 

at 6 = 0, x. 

de ac 
Y&=0 Z”O 

(6) 

(7) 

In the above equations, the Rayleigh number, Ra, is given 
by 

&7Lwo - T&J 
for constant temperature 

Ra = 
&lbqa’ 

(8) 

VCZk 
for constant heat flux 

and the Lewis number, Le, is 

a 
Lt?=-. 

D 

Parameter N measures the relative importance of mass and 
thermal diffusion in the buoyancy driven flow and is defined 
by 

tmo-Cm) 
N= pt(To-T,) for lxse ’ 

N _ Urn/D) 
B&M 

for case 2 

N = ‘iyqie$) for case 3 
r 

/W/De) 
N=/gr(&-*,) forcase (10) 

where Brand /II are the coefficients of thermal expansion and 
concentration expansion, respectively ; q and m are heat and 
mass flux; k and D are thermal conductivity and mass 
diffusivity. It is clear that N is zero for pure thermal driven 
flow, infinite for mass driven flow, negative for aiding flow 
and positive for opposing flow. 

ANALYSIS 

In the limit of small Rayleigh number (Rc 4 0). an ana- 
lytical solution to the problem stated in the preceding section 
is obtained by means of a standard perturbation analysis. 
The approach assumes power series expression in Ra for Y, 
0 and C 

Y=Y,+RuY,+Ra’Y,+... (11) 

0=00+Ro8,+Ra’02+... (12) 

C=CO+RaC,+Ra2C2+... (13) 

where Y,, Q, and C, (with i = 1.2,. . .), which are functions 
of R and 8, are obtained by substituting expressions (1 l)- 
(13) back to equations (l)-(3) and solving the equations 
resulting from collecting terms containing the same power 
of Ru. The solution procedure is straightforward, therefore 
only the final results for stream function, temperature and 
concentration up to the second-order convection correction 
are presented. 

The zeroth-order solutions, Y,,, 0,, and C,, correspond tc 
the state of pure diffusion and are given by 

Y. = 0 (14a) 

eo=f 
co=;. 

(14b) 

Although they have the same form for all four cases, 
however, it should be noted that the temperature and con- 
centration are nondimensionalixed with different parameters 
and the definition of the Rayleigh number is also different 
for each case. 

Case 1. A sphere of constant temperature and concentration 
The first-order solutions are 

Y\” =f(l-N)(R-R-‘)sin’B (15a) 

oc,‘)=~(l-N)~~~BIR-‘-tR-?+:R-J] (15b) 

C,” = Le 01’) (154 

and the second-order solutions are 

Y$‘r=!(l-N)(l-NLe)sin*Bcos6[]R-4 

+R-‘-$-*I (16a) 

@$I’= ;(I-N)’ - !!&-I+ ;R-2 
[ 

-$R-J- +-J In R+ +.-R-J 
1 

+!(,-N)2cos2(j ‘R-d&2 
4 [ 2 8 

+!?R-‘+fR-‘,nR-;R-4+;R-’ 1 
+;(I-N)(l-NLe) 

[ 
_;R-‘+;R-2 

_ $-J- ~R-J ln R_ L-R-~ 1 
+:(I-N)(l-NLe)cos’t? :R-I 

[ 
-fR-1 

17 3 1 
+zR-‘+3R-JInR+ER-’ I 

cp = LLqoy: + o$q) + Le(Q~:’ d-0$:‘) (1W 
where the number in parentheses refers to the case under 
study, the hrst subscript represents the solution level for 
the specific case, and the second subscript the term in the 
expression of that solution. For example, O$‘j represents the 
first term in the expression of the second-order solution 
for case 1. This shorthand notation is very convenient in 
presenting our final results. As an indication of proper for- 
mulation and correct calculation, the above solution are 
reduced to those of Yamamoto [8] for pure thermal driven 
flow if one sets N = 0, i.e. in the absence of a concentration 
gradient. 

Case 2. A sphere of constant heat@ and mass j7u.x 
The first-order solutions are 

Yj21 = y\” 
(174 

~f’=~(1-iV)cos~[R-‘--~-‘+fR-‘] (17b) 

C,2) = J& 012’ . (17c) 
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and the second-order solutions are 

Y~z)=f(~-N)(l-NLe)sin’BEosB 

C 

2 5 
x -R-- 

3 
4 CR”’ -&R-f 

1 
(tw 

sp +N) 
C 
+-I+~~-' 

209 -- &?-' -;R-JinR+$rJ 
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++v)2cos'e fR-+-' 
E 

+#-I+ ;R-‘ln R AR-'+JtR-S 
1 
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[ 
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1080 
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E 
g-4 -!& 

+gR-"+;R-'lnR+$R-.' 
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(W 

C$*) m te2(o~2~+0~z~)+Le(Q~2~90~~). (tw 

Cme3.A ~~~~~eo~~~i~~ ~~~r&~re~~~~ 
The first-order solutions are strai~htfo~a~d and can be 

readily obtained from the solutions of cases I and 2. 
However, the second-order solutions become somewhat 
involved due to the complication of mixed boundary 
conditions. 

The first-order solutions are 

yq = yI” CI9a) 
0’:’ E @\U (lab1 
c73’ = az”, 

WI 

and the second-order solutions are 
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FIG. 1. Steady-state flow, temperature and concentration fields for Ru = I and Le = I (AY = 0.2, 
A0=AC=O.l):(a)casel;(b)case2;(c)case3;(d)case4. 
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FIG. 2. (continued) 

+%(I-N)‘cos’B [ 
g-1 _ ;R-‘+ !!-$-l 

+;R-‘1nR - ;R-4+ AR-l . 1 
For cases 1 and 2, it is noticed that equations (2) and (3) 

as well as boundary conditions (5)-Q) take an identical form 

if Le = 1. Therefore, solutions for the temperature field are 
exactly the same as those for the concentration field. 
However, this is not the case for cases 3 and 4 due to differ- 
ences in the boundary conditions. 

To examine the roles played by the two new parameters, 
i.e. the buoyancy ratio N and Lewis number Le. results are 
plotted in Figs. I and 2 for a Iixed .L.e and a fixed N, respec- 
tively. As stated earlier, the sign of the buoyancy ratio deter- 
mines if the concentration gradient is against or in favor of 
the thermal buoyancy driven flow. This is clearly dem- 
onstrated in Fig. 1 where the flow and temperature fields of 
N = 0 are also included for comparison. For N < 0, the 
concentration gradients assist the flow, while they suppress 
it for N > 0. As a result of this interaction, it is noticed 
that the warm, high concentration region shifts upwards for 
N < 0 and downwards for N > 0. 

For a fixed N, an increase in the Lewis number has a more 
pronounced effect on the concentration field than it does on 
the flow and temperature fields (Fig. 2). It is also noted that 
an increase in the Lewis number has further assisted the 
thermal buoyancy driven flow for N c 0, and suppressed it 
for N > 0. In addition, the warm, high concentration region 
also shifts upwards for N < 0 and downwards for N > 0. 

It should be pointed out, however, that the solutions thus 
obtained are expected to be valid in the diffusion dominated 
regime. For a situation when the Lewis number is large, the 
solutions may not hold due to the resulting strong convection 
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(even.at a small Ru). This increase in the strength of the natural convection in a porous medium, Int. J. Heat Mass 

convective flow can also be observed in Fig. 2. TrMsfer 28,9@-918 (1985). 
To summarize, the flow and temperature fields are sig- 

nificantly modified by the inclusion of mass transfer effects. 
In the presence of a concentration gradient, flow can be either 
aided or retarded, depending on the sign of the buoyancy 
ratio N. The Lewis number is observed to have a stronger 
influence on the concentration field than it does on the flow 
and temperature fields. In addition, it amplifies the results 
produced by the buoyancy ratio. 

3. 0. V. Trevisan and A. Bejan, Natural convection with 
combined heat and mass transfer buoyancy effects in a 
porous medium, fnf. J. Heat Mass Transfer 28,1597-1611 
(1985). 
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INTRODUCTION 

MANY practical engineering applications in radiative heat 
transfer require the evaluation of geometric configuration 
factors between a cylinder and a coaxial axisymmetric body, 
such as pipe exhaust systems (including a rocket and its 
plume) and annular radiative fins. Although view factors for 
such geometries resist closed-form solutions, the number of 
required integrations for a numerical calculation could be 
reduced substantially if analytic expressions are obtained for 
the configuration factors between differential elements of 
the axisymmetric body and the cylinder. In this note, exact 
solutions are derived for shape factors between differential 
elements of arbitrary orientation and cylinders. Using these 
derivations, we illustrate the calculation of view factors 
between cylinders and general coaxial bodies via a method 
in which only a single numerical integration need be per- 
formed [I]. 

View factor from a dljJerential element to a cylinder 
The configuration shown in Fig. 1 depicts a differential 

area dA2 and a cylinder Cy. The unit normal vector to dA2 
lies in the pz plane. If the angle 6 is less than 
tan-‘[HP/(P’-l)], where H = h/r and P =p/r are the 
dimensionless cylinder height and distance from the differ- 
ential element to the axis of symmetry, respectively, the con- 
tour of the section of the cylinder which is visible to the 
differential area consists of four curves: two vertical lines 
?% and DE, the circular arc m, and the elliptic arc BCD. 
The view factor from the differential area to the cylinder can 

t Present address: Department of Mechanical Engin- 
eering, University of Florida, Gainesville, FL 32611, U.S.A. 

be determined by integratingover this contour [2]. Since 
the line intesl over arc BCD is identical to that over the 
horizontal BD, only the contour BDEFGB need be evalu- 
ated. The curves describing this contour can be expressed in 
the nondimensional form as 

GB X=J(P2-1)/P, Y= l/P, z=z 

DE X = -J(PZ- 1)/P, Y = I/P, z = z 

DB X=X, Y=l/P, Z=(P’-l)/Ptan0 

EFG X=sinJ, Y=cos/?, Z=H. 

FIG. 1. Cylinder and differential element configuration. 


