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INTRODUCTION

WiTH THE knowledge accumulated from the previous studies
on convective heat transfer in porous medla considerable
attention has now turned to a more sophisticated problem
that takes into account the mass transfer effects. The
phenomenon, which is sometimes referred to as ‘double-
diffusive’ or ‘thermohaline’ convection in geophysical fluid
mechanics, has many important applications in energy-
related engineering probiems, for example, the migration of
moisture in fibrous insulation, the spreading of chemical
pollutants through water-saturated soil, the coollng of
nuclear reactors and the underground uiS[‘JOSZu of nuclear
wastes.

Nield [1] made the first attempt to study the stability of
flow in horizontal layers with imposed vertical temperature
and concentration gradients for coupled heat and mass trans-
fer by natural convection in a porous medium. Bejan and
co-workers [2-5] conducted a series of investigators to study
these effects on natural convection for various geometries. In
a recent study, Poulikakos [6] extended the results by Bejan
[7] to consider buoyancy induced heat and mass transfer
from a concentrated source in an infinite porous medium.

The purpose of this study is to analyze another practically
important problem of natural convection induced by the
combined action of temperaiure and conceniration gradienis
from a buried sphere. The approach is parallel to that of
Poulikakos [6], however, more complicated boundary con-

rhhnnn ie. combination of different thermal and con-

LA0T L. Comenation oOf QIcisnt ncima: and oon

ccmratnon boundary conditions, are considered. Emphases
have been placed on a fundamental examination of these
effects on the flow, temperature and concentration fields.

FORMULATION

Consider a sphere of radius a buried in an infinite porous
medium. For heat and mass transfer driven by buoyancy
effects, the goveming equat\ons based on Da.rcy s law are

simplified by introducing the stream function such that they
are given by
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where temperature and concentration have been non-
dimensionalized as follows:

T—
0= 2., constant temperature
TO - Tcn
T—T,
Wa—’ constant heat flux
c—cCy
C= , constant concentration
Co—Cq
Eﬁgﬁ, constant mass flux (4)
mjila

The subscripts 0 and oo denote the condition at the surface
of the sphere and at infinity, respectively.
Four different cases are considered in the present study:

(1) a sphere of constant temperature and concentration;

N A enhana af annatant hant Ao and mass S
\4) & Spicre Of constant ACat nuX and mass Qux;

(3) a sphere of constant temperature and mass flux;
(4) a sphere of constant heat flux and concentration.

Therefore, the boundary conditions can be summarized as
follows:

atR=1,
0= for constant temperature case
% = —1 for constant heat flux case
oR
C= for constant concentration case
oC
R- " 1 for constant mass flux case
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In the above equations, the Rayleigh number, Ra, is given
by

K T,-T,
—gﬂﬁ—-”—)a- for constant temperature
Ra = ) @®
KgBrga f h
vk or constant heat flux

and the Lewis number, Le, is

@

Le = D )
Parameter N measures the relative importance of mass and
thermal diffusion in the buoyancy driven flow and is defined
by

= {T‘T(;_:—:% for case 1

%:Z;f)) for case 2

Lo forease
N= Ff(c(;:/—% for case 4 (10

where f;and B, are the coefficients of thermal expansion and
concentration expansion, respectively; g and m are heat and
mass flux; £ and D are thermal conductivity and mass
diffusivity. It is clear that N is zero for pure thermal driven
flow, infinite for mass driven flow, negative for aiding flow
and positive for opposing flow.

ANALYSIS

In the limit of small Rayleigh number (Ra - 0), an ana-
lytical solution to the problem stated in the preceding section
is obtained by means of a standard perturbation analysis.
The approach assumes power series expression in Ra for ¥,
@and C

W=Wo+Ra¥,+Ra* ¥, +... an
@ =0y+Ra® +Ra*O,+... 12
C=Co+RaC,+Ra*Cs+... 13)

where ¥, ©, and C, (with i = [, 2,...), which are functions
of R and 0, are obtained by substituting expressions (11)-
(13) back to equations (1)<(3) and solving the equations
resulting from collecting terms containing the same power
of Ra. The solution procedure is straightforward, therefore
only the final results for stream function, temperature and
concentration up to the second-order convection correction
are presented.
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The zeroth-order solutions, ¥4, ®, and C,, correspond tc
the state of pure diffusion and are given by

¥o=0 (14a)
!

Q=% (14b)
Co =1

=g (l4)

Although they have the same form for all four cases,
however, it should be noted that the temperature and con-
centration are nondimensionalized with different parameters
and the definition of the Rayleigh number is also different
for each case.

Case 1. A sphere of constant temperature and concentration
The first-order solutions are

Y = {1-N)(R-R"")sin’@
O =1-N)ycos (R '—3R*+iR77]
CV = Le @V
and the second-order solutions are
WM = {(1-=N)(1—N Le)sin? @ cos 6 [3R—3
+R"!
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(15b)
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where the number in parentheses refers to the case under
study, the first subscript represents the solution level for
the speciﬁc case, and the second subscript the term in the
expression of that solution. For example, ©4" represents the
first term in the expression of the second-order solution
for case 1. This shorthand notation is very convenient in
presenting our final results. As an indication of proper for-
mulation and correct calculation, the above solution are
reduced to those of Yamamoto [8) for pure thermal driven
flow if one sets N = 0, i.e. in the absence of a concentration
gradient.

(16b)

Case 2. A sphere of constant heat flux and mass flux
The first-order solutions are

YO = o (17a)
O = (1-N)cos 0 [R™' —iR"+1R7’]  (1Th)
P = LeOP (17¢)
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and the second-order solutions are

Yo = %(1 ~N3(1 ~N Le)sin? 8 cos #
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Case 3. 4 sphere of constant temperature and mass flux

The first-order solutions are straightforward and can be
readily obtained from the solutions of cases I and 2.
However, the second-order solutions become somewhat
involved due to the complication of mixed boundary
conditions.

The first-order solutions are

Y = P (19a)
P =0 (19b)
P = (19)
and the second-order solutions are
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Case 4. A sphere of constant heat flux and concentration
By the same manner described in case 3, the first-order

solutions are
P = P
oM = op
o=
and the second-order solutions are
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FiG. 2. Steady-state flow, temperature and concentration fields for Ra = 1 and N = 0.5 and ~0.5(AY = 0.2,
AG = AC = 0.1): (a) case 1; (b) case 2; (c) case 3; (d) case 4.
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Fi1G. 2. (continued)
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For cases 1 and 2, it is noticed that equations (2) and (3)
as well as boundary conditions (5)—(7) take an identical form

if Le = 1. Therefore, solutions for the temperature field are
exactly the same as those for the concentration field.
However, this is not the case for cases 3 and 4 due to differ-
ences in the boundary conditions.

To examine the roles played by the two new parameters,
i.e. the buoyancy ratio N and Lewis number Le, results are
plotted in Figs. | and 2 for a fixed Le and a fixed N, respec-
tively. As stated earlier, the sign of the buoyancy ratio deter-
mines if the concentration gradient is against or in favor of
the thermal buoyancy driven flow. This is clearly dem-
onstrated in Fig. 1 where the flow and temperature fields of
N =0 are also included for comparison. For N <0, the
concentration gradients assist the flow, while they suppress
it for N > 0. As a result of this interaction, it is noticed
that the warm, high concentration region shifts upwards for
N < 0 and downwards for N > 0.

For a fixed N, an increase in the Lewis number has a more
pronounced effect on the concentration field than it does on
the flow and temperature fields (Fig. 2). It is also noted that
an increase in the Lewis number has further assisted the
thermal buoyancy driven flow for N < 0, and suppressed it
for N > 0. In addition, the warm, high concentration region
also shifts upwards for N < 0 and downwards for ¥ > 0.

It should be pointed out, however, that the solutions thus
obtained are expected to be valid in the diffusion dominated
regime. For a situation when the Lewis number is large, the
solutions may not hold due to the resulting strong convection
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(even at a small Ra). This increase in the strength of the
convective flow can also be observed in Fig. 2.

To summarize, the flow and temperature fields are sig-
nificantly modified by the inclusion of mass transfer effects.
In the presence of a concentration gradient, flow can be cither
aided or retarded, depending on the sign of the buoyancy
ratio N. The Lewis number is observed to have a stronger
influence on the concentration field than it does on the flow
and temperature fields. In addition, it amplifies the results
produced by the buoyancy ratio.
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INTRODUCTION

MAaNY practical engineering applications in radiative heat
transfer require the evaluation of geometric configuration
factors between a cylinder and a coaxial axisymmetric body,
such as pipe exhaust systems (including a rocket and its
plume) and annular radiative fins. Although view factors for
such geometries resist closed-form solutions, the number of
required integrations for a numerical calculation could be
reduced substantially if analytic expressions are obtained for
the configuration factors between differential elements of
the axisymmetric body and the cylinder. In this note, exact
solutions are derived for shape factors between differential
elements of arbitrary orientation and cylinders. Using these
derivations, we illustrate the calculation of view factors
between cylinders and general coaxial bodies via a method
in which only a single numerical integration need be per-
formed [1].

View factor from a differential element to a cylinder

The configuration shown in Fig. 1 depicts a differential
area d4, and a cylinder Cy. The unit normal vector to d4,
lies in the y—z plane. If the angle 6 is less than
tan~'{HP/(P*—1)}, where H = h/r and P = pjr are the
dimensionless cylinder height and distance from the differ-
ential element to the axis of symmetry, respectively, the con-
tour of the section of the cylinder which is visible to the
differential area consists of four curves: two vertical lines
GB and DE, the circular arc EFG, and the elliptic arc BCD.
The view factor from the differential area to the cylinder can

t Present address: Department of Mechanical Engin-
eering, University of Florida, Gainesville, FL 32611, U.S.A.

be determined by integrating over this contour {2]. Since
the line integral over arc BCD is identical to that over the
horizontal BD, only the contour BDEFGB need be evalu-
ated. The curves describing this contour can be expressed in
the non-dimensional form as

GB X=J(PP~1)/P, Y=1/P, Z=2Z
DE X=—J(B*=1)P, Y=I/P, Z=2Z
DB X=X, Y=1/P, Z=(P*~1)/Ptand
EFG X=sinp, Y=cosf, Z=H.
.
h
-] n
P
<r’ -y
P dAz
2

Fi1G. 1. Cylinder and differential element configuration.



